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“Little experience is sufficient to show that the traditional machinery of statistical 
processes is wholly unsuited to the needs of practical research. Not only does it 
take a cannon to shoot a sparrow, but it misses the sparrow! The elaborate 
mechanism built on the theory of infinitely large samples is not accurate enough for 
simple laboratory data. Only by systematically tackling small sample problems on 
their merits does it seem possible to apply accurate tests to practical data.” - - 
Fisher, R (1934). 
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In previous work (Hibpshman, 2013) we developed a model of accountability measurement 

for educator preparation programs (EPPs) approved by the Kentucky Education Professional 

Standards Board (EPSB).  This model specified a general methodology for identifying deficits in 

program performance given the mission and goals of the EPSB, together with recommendations 

for specific measures of performance.  The model was intended to be comprehensive: i.e., it 

provided for the evaluation of every performance issue that might be of interest to EPSB, either by 

recommending a specific method, or by providing for the development of methods for new issues 

that might arise in the future. 

Although the 2013 model is comprehensive, it did not deal with one problem that has 

plagued the field of EPP accountability for some time: evaluation of small programs.  Some 

programs, such as elementary education, enroll sufficient numbers by nearly all providers to allow 

for reasonably accurate estimates of program performance year to year; but many programs, even 

in larger institutions, enroll so few candidates that we cannot create estimates of program 

performance using traditional methods, even when data are combined across multiple years.  Yet it 

is in our interest to evaluate these small programs as we would large programs, since public school 

children are taught by the teachers they produce, and we want to assure that, as with larger 

programs, smaller programs are of sufficient quality to prepare completers that promote adequate 

student achievement. 

These small programs actually make up the majority of programs offered by Kentucky-

approved educator preparation providers.  They include such content areas as physics, earth 

science, and foreign languages – which are essential to the education enterprise but are generally 

not popular with K-12 students – and programs for teachers of low-incidence special education 

populations. Some common content areas, such as mathematics, English, or even Elementary 

Education have ample enrollments when offered by large providers, but may have insufficient 

enrollments to be evaluated with traditional methods when offered by small providers. 

That small programs must exist is a consequence of two factors, curriculum requirements 

and teacher labor markets.  Although the Commonwealth of Kentucky does not explicitly require 

some of the subjects for which educators are prepared by state-approved providers (such as 

physics, foreign languages, and engineering), these subjects are nonetheless highly desirable in a 

competitive national and state educational environment, and would be expected to be available to 

public school students, even if they are not popular.  A substantial part of the curriculum of 

Kentucky K-12 schools consists of this type of subject matter.  

Teacher labor markets matter because in Kentucky, teacher labor markets in most public 

school districts are dominated by a single provider.1  In some districts the dominance of the largest 

supplier of teachers is so great that no other meaningful supplier can be said to exist.2  Because 

this is true, unless there were some substantial change in markets, we can expect that, as a 

practical matter, if a district needs a teacher in a particular subject area, the teacher must come 

from the dominant provider.  Providers that dominate districts must therefore train teachers in a 

very wide range of subject areas in order to fill job openings, and because some of these will be in 

subjects for which only a small number of placements exist in any given year, must necessarily 

operate small programs.  To understand this issue, consider the case of physics.  In earlier work 

we demonstrated that there are job openings for about 20 physics teachers statewide in any given 

year (Clements & Hibpshman 2008).  But because these openings are likely to occur in 

widespread locations across the state, having a few large physics programs would guarantee that 

most of the jobs went unfilled, while guaranteeing that the majority of newly-trained physics 

                                                           
1
 By this we mean that a large plurality – often more than half – of the teachers employed by the district were trained by a single 

provider. 
2
 E.g., districts in which 75% or more of the teachers, over a long period of time, are completers of a single provider. 
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teachers would be unemployed.3  Although we would have no shortage of physics completers 

statewide, we would nonetheless effectively have a statewide shortage. 

The present paper evaluates the nature and scope of the small-sample problem, and 

recommends some approaches to evaluating small programs.  In section 1 we define what is 

meant by a “small program.”  In section 2 we evaluate the extent of the problem in Kentucky.  In 

section 3 we suggest some approaches to evaluating the performance of these programs. 

  

                                                           
3 Because research on teacher labor markets has shown consistently that completers do not often stray far from the geographic location of the 
program in which they are trained (Boyd et al., 2005). 
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Section 1 

What is a small educator preparation program? 

 

To answer this question, we begin with a consideration of the nature of our task in 

evaluating EPPs.  What we want to know is whether an EPP is performing as well as, better than, 

or worse than our expectations.  Our expectations might be defined by some target value (as when 

we desire completer Praxis pass rates to be greater than some value)4, or they might be defined in 

terms of typical values for similar programs, or they might be based on a value negotiated with a 

particular provider.  There will necessarily be some amount of error in our calculated estimates of 

program performance, either because of random fluctuations in the underlying causes of program 

performance, or because of data errors.  Because some amount of error is unavoidable, we need 

some way to determine how confident we are that an apparent deviation from our expectations is 

in fact an indication that the program truly deviates from our expectations and is not due to 

chance5. 

Methods for making this type of judgement are well-established in the field of statistics.  In 

general, statistical analyses establish the level of confidence that a result is truly different from 

some other value by use of the standard error, which is a measure of the likelihood that a statistic 

differs by some magnitude from the true value.6  The standard error is inversely related to the size 

of the sample on which it is based, and the smaller the sample size, the greater the standard error.  

When a sample size is very small, the size of the standard error may be so great relative to the 

obtained value as to make it possible to detect only very large differences with any reasonable 

level of confidence.7 

It is the difficulty of detecting small or moderate deviations from expected values that 

defines what is a small sample.  A good rule of thumb used by many in statistics and the sciences 

is 30.8  That is because when the sample size is at least thirty, the probabilities of the t distribution 

are functionally indistinguishable from those of the normal distribution.  We note that this is really 

more a matter of convenience than of methodological purity: the t distribution by its nature corrects 

for distortions in the sampling distribution caused by small sample sizes, and meaningful 

comparisons can be made using t with very small samples – as few as 2 or 3, if conditions are right 

(Bland & Altman, 2009; De Winter, 2013).9  

What defines a sample as small is a question of what methodology is appropriate for 

analysis of data about program performance.  The frequently-mentioned minimum of 25 for studies 

of EPP performance is based, we believe, on the view that our usual practice – comparison of raw 

proportions – will generate a greater than desirable level of uncertainty if the sample size is very 

much less than that.  There is perhaps some justice to this, but it is a problem only as long as 

simple comparison of unadjusted proportions is the predominant method.   

Concerns over the difficulty of evaluating small programs has some unfortunate 

consequences.  CAEP (CAEP, 2013), in its data requirements for state licensure programs, states 

that it will waive evaluation of programs with less than 10 enrollments in a three year period.10  

Application of these waivers would mean, in Kentucky, that more than half of our programs would 

receive waivers for every year for which data are available.  This would mean that a substantial 

                                                           
4
 A “bright line.” 

5
 i.e., is due to some factor within the control of the provider. 

6
 More accurately, the standard error is the standard deviation of the sampling distribution of a statistic. 

7
 The size of the standard error depends in part on the type of statistic used.  In our case, because we typically use proportions to 

measure performance, the standard error tends to be especially large when the sample size is small. 
8
 In some fields, a sample of a thousand or more may be viewed as small (Mitschele, 1991). 

9
 Decisions about the meaningfulness of statistics based on samples of various sizes are the subject of very complex analyses 

regarding power and sampling methodology which are beyond the scope of this paper. 
10

 For ease of exposition, we call this the “CAEP small sample rule.” 
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proportion of the teachers trained by these programs would not be subject to evaluation, and that 

programs that prepare teachers in some low-incidence subjects would never be evaluated at all.  

This would mean that we were managing the quality of only large, popular programs. 

The small size of many of our programs is an example of a problem that exists in other 

fields, drawing reasonable inferences in circumstances where sample sizes are small for reasons 

organic to the object of study.  Good examples of this type of problem outside of educator 

preparation are bone density studies of astronauts (Vico et al., 2000), and destructive materials 

studies (Garland & Greene, 2009).  The total number of persons who have ever been in space is 

just a few hundred, and at any given time only a few can be assembled for a study. The cost of 

large-scale studies of materials toxicity can be substantial when the materials must be destroyed in 

the process of evaluation.  The question of how the human body reacts to conditions in space is 

vital for the conduct of future space missions, and it would be irresponsible to forgo such studies 

because of small sample sizes. It would likewise be irresponsible for federal agencies to forego 

toxicity testing because of small sample sizes.  We argue here that it would be equally 

irresponsible to forego studies of small EPPs.   

Instead of applying naïve methods learned in our undergraduate statistics or research 

methodology courses, we have the option of applying less well-known but well-established 

methods designed for the types of problems that confront us.  We will demonstrate two such 

methods in section 3, but it is important to be clear on the nature of what we are attempting to do.  

When we evaluate the performance of EPPs, we are not trying to conduct scientific studies to 

construct theories of teacher preparation.11 Instead, we are trying to assemble evidence that will 

permit us to identify deviations from expected performance, so that we can intervene in order to 

assure improvements in teacher education.  Formal criteria such as alpha levels and confidence 

bands, while they are necessary to our enterprise, are useful only insofar as they help us to make 

reasonable decisions about the performance of EPPs.  There is nothing sacrosanct about a 

“confidence level” of 95% (Guyatt, Mills & Elbourne 2008; Lakins, 2014). 

 

  

                                                           
11

 Although these methods, applied over many studies of EPPs will, over time, lend themselves to theory construction Coppedge (2002). 
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Section 2 

The extent of the small sample problem 

 

To answer this question, we evaluated data from a research dataset constructed from the 

EPSB database in 2013.  This dataset has reliable data for academic years close to 2012, but 

because there are known to be errors in earlier years of the database, we confined ourselves to 

the 6 most recent years, academic years 2007-2012.  We applied a number of criteria to determine 

what proportion of teachers and programs would be deemed small, according to the following 

definitions: 

 

 The proportion of programs that had less than 25 admissions for any year in the 6-

year range 

 The proportion of candidates admitted to all programs who would not be subject to 

evaluation, applying the minimum 25 admissions rule 

 The proportion of programs that would have received waivers under the CAEP small 

sample rule for one or more years within the range 

In addition, because it is often suggested that a solution to the problem is to combine data 

in three-year increments, we evaluated the proportion of programs and candidates who would not 

be evaluated if we did so.  We also evaluated the question of whether, by combining programs into 

supernumerary classes (“program categories”), we could provide for evaluation of the majority of 

programs. 

 

Results 

 

If the CAEP small sample rule is applied to year-to-year data, we find that 64% of approved 

programs in Kentucky would receive waivers for one or more years in the 6-year range, and 56% 

would receive waivers for all years.   

Only 2% of Kentucky programs would have 25 or more admissions for every year in range.  

These programs would constitute about a fourth of the teachers admitted in each of those years, 

i.e., about three fourths of the admitted candidates would not be subject to evaluation. 

When data are combined in 3-year increments, 41% of programs would receive CAEP 

waivers for one or more years, and just 5% of programs would have 25 or more admissions for 

each of the three-year time periods. 

Providers operate a large number of similar programs even within the same institution, and 

it is of interest to know whether combining data from similar programs might allow more programs 

and candidates to be evaluated.  For this purpose we created “program category” classes by 

combining data within subject areas (e.g. combining data for all LBD programs, whether traditional 

or alternative route), and by combining programs that were within some subject superclass (e.g., 

combining all foreign languages into a single program category).  Evaluating the admissions for 

these program categories, we found that 50% would be granted waivers under the CAEP small 

sample rule, and 35% would have waivers for the entire 6 year range.  64% of the program 

categories would have less than 25 admissions for at least one year of the range.  About 35-40% 

of candidates would still not be subject to evaluation.  Even when these program categories were 

compiled into three-year intervals, 21% would receive waivers under the CAEP small sample rule, 

and 11% would receive waivers for the entire range of available years.   
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Discussion 

 

It is clear that the great majority of EPSB-approved programs are classifiable as small 

programs.  Even when data are combined into program categories, and when data are combined 

into multiple year “buckets,” substantial numbers of programs and candidates would never be 

subject to evaluation, if the above-mentioned rules were applied.  If we wish to comprehensively 

evaluate the performance of EPPs, we must apply strategies designed for these many small 

programs. 
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Section 3 

Methods 

 

We investigated a number of different strategies: 
 

 Sequence analysis 

 Binomial probability charting 

 Bayesian approaches to statistical analysis, including: 
o Bayesian sequential analysis 
o Naïve Bayes analysis 

 Survival analysis 

 Exact methods designed for small samples, especially Fisher’s exact test with 
Wilcox’s correction 

 Game theory 
 
All of these methods are useful, but some of them either require difficult computations 

(Bayesian sequential analysis, exact methods, game theory), or were not easily interpretable by a 
person with minimal mathematical training (survival analysis, Naïve Bayes, Bayesian sequential 
analysis, game theory), or required the use of software packages not easily adaptable to our 
methodology (Bayesian analysis, survival analysis, game theory).  Two, however – sequence 
analysis and binomial probability charting – proved optimal because of their simplicity, ease of 
computation, and easy interpretability. 

Sequence analysis has a long history, beginning in 1929 with the seminal paper by Dodge 
and Romig (1929) at the Bell Systems Laboratory.  The method works by accumulating data over 
time, and computing confidence intervals for the data accumulated at each time interval.  The 
usual standard is a “3 sigma” (i.e., three standard error) boundary around the obtained value, and 
any value that falls outside the boundary is deemed to be remarkable.12  

To give a concrete example, consider the following two charts drawn from our research 
data set: 

 
Chart 1 

Chemistry program completions for “Provider B” 
2005– 2011 

 

 
 

                                                           
12

 Here we use a two sigma boundary because of the nature of our estimation problem, and to conform to the standard we use in our 
later, binomial, charts. 
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This is a very small program – only 31 candidates admitted over a seven year period, 
averaging 4.4 admission per year.  The chart identifies this program as underperforming relative to 
other similar programs in just three years, with performance always below expectations after the 
first year.  We would be justified in questioning whether this program requires some intervention to 
improve its completion rate.  Further study would of course be necessary:  if for example this is a 
program that typically admits a greater-than-average proportion of part-time candidates, the 
intervention would be different than if all candidates were full-time. If we were to posit a “bright line” 
standard for program completion, then this program might be subject to sanctions. 

Consider chart 2, which displays the results for a different provider for the same subject, 
chemistry. This program admits an average of 4.6 candidates per year.  The chart identifies it as 
overperforming in 4 years with just 11 admissions, and stays above the statewide level of 
performance thereafter.  We would be justified in judging this program as exceptionally high-
performing, and might want to refer the staff of Program B to this program for ideas about how to 
improve their completion rate. 

 
Chart 2 

Chemistry program completions for “Provider F” 
2005– 2012 

 

 
 
 
Chart 3 illustrates the use of what we here call a “binominal” chart. 
 

Chart 3 
Physics program completions within three years of admission 

2004– 2012 
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All of these programs are very small – the largest admitted less than 2 candidates on 

average each year between 2004 and 2012.  We assume that there is no bright-line standard for 
program completions, and use the statewide completion proportion as a rough measure of how 
well each program is performing relative to other programs in the same subject area.  This chart 
functions by plotting the proportion of completions with a 2 standard-error confidence boundary. 

Based on this chart we can say that just one of the six programs is remarkable.  We are 
reasonably confident that “Institution B” is not performing as well as other similar Kentucky-
approved physics programs.  We can make this decision based on a total of 13 cases over 9 years 
– an average of 1.4 admissions per year. 

Note that this chart loses some information that was available on the sequence chart, 
because it combines data for six years into a single measure.  As a result, provider F, on this chart, 
no longer appears to be doing exceptionally well, as it did on the sequence chart. On the other 
hand, it does a fairly good job of identifying programs that markedly deviate from expectations, and 
this is what we want. 

Chart 4 demonstrates the solution to one problem likely to occur when sample sizes are 
very small – creating a standard error when all of the cases are either successes or failures.13  
Although the maximum likelihood estimator of p (the proportion of successes) is just the number of 
successes divided by the number of observations (Chew, 1971), a finding that a program can be 
expected – based on historical records alone – to always be successful has little credibility (Lewis 
& Sauro, 2006).  What we want is a measure of how confident we are that the program under study 
either exceeds or fails to achieve our expectations, and this requires the computation of a standard 
error.  If all of the cases are successes or failures, the standard error will be 0.   

Chart 4 corrects for this circumstance by use of the adjusted Wald estimator, which applies 
a correction developed specifically to deal with this problem (Lewis & Sauro, 2006).   

 

                                                           
13

 i.e., here we add an additional correction not incorporated into Chart 3. 
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Chart 4 

French program completions within three years of admission 
2005– 2012 

 

 
 
These are French program completions for seven programs that admitted candidates from 

2005-2012.  For two programs – Provider 1 and Provider 3 – all candidates completed within 3 
years.  The adjusted Wald estimator applied to the estimates for these two programs allows us to 
establish a confidence band, even though the unadjusted standard error would be 0.  It is of 
interest to note that we can be reasonably confident that these two programs are performing better 
than the statewide expectation, even though the sample sizes are quite small – in one case, only 5 
admissions. We are reasonably confident that the program offered by Provider 4 is 
underperforming. 

These methods are not limited to use with small samples, and that solves a conceptual 
problem.  One can argue that using these methods with small samples, and more traditional 
methods with larger samples, amounts to subjecting different programs to different standards.  
Although this isn’t really true, we want to avoid the appearance of bias whenever possible.  To 
illustrate the use of these methods with both large and small samples, we present Chart 5. 
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Chart 5 
Elementary program completions within three years of admission 

2007– 2012 
 

 
Some of these programs are small – Institution 19, for example, admits an average of just 7 

candidates per year.  Others are very large, admitting 200 or more candidates per year.   
This final chart illustrates the use of this methodology with a problem where a “bright line” 

standard applies. 
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Chart 6 
Praxis 3-year Pass Rate 

Chemistry: Content Knowledge 
Candidates Completing in Academic Years 2007– 2012 

 

 
 

The blue vertical line assumes we would have a fixed standard of 80% for acceptable 

performance.  The green vertical line is the statewide pass rate computed from the data.  Three 

programs have rates below the fixed rate – Providers 5, 8, and 9.  Although all three have failed to 

meet our expectations, we would probably make somewhat different decisions based on this chart.  

We are not very confident that the pass rate for programs 5 and 9 is actually below 80%, and in 

these cases we would want to do additional analysis – perhaps prepare sequence charts.  We are 

reasonably confident, however, that Provider 8 is failing on this standard, and would be justified in 

applying some remedy, based on these data alone. 

Note one additional feature illustrated by this chart: the value of the adjusted Wald 

estimator.  Although all of the candidates from Provider 1 passed the Praxis II test, we cannot 

confidently say, based on the adjusted Wald estimator, that this program is really doing better than 

other programs across the state. 

 

 

The Way Forward 

 

Based on the above analysis, we believe we have a workable method for performing 

accountability measurement for small programs.  This method applies the following principles: 

 

 We apply the binomial chart for all programs of the same type, and perform 

analyses with other methods when it is appropriate to do so 
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 We use a 6-year horizon, guaranteeing data from two completely disjoint data 

cycles14 

 We chart all programs with at least 5 observations for each 6-year horizon 

 

Using this approach, 2/3 of our programs can now be evaluated using a common, easily 

interpretable methodology.  This leaves a third of our programs that are still too small to be subject 

to analysis.  In principle, we can design methods for the evaluation of any program with 2 or more 

admissions, but it is unlikely that we would find deviations from expectations for such tiny programs 

except in cases where the deviations are very large.  A better strategy, we believe, is to question 

whether these extremely small programs are viable.  In some cases – such as preparation 

programs for teachers of low-incidence special education populations – it may be necessary to 

continue these programs.  But in many cases, these programs are too small to be viable, and 

should be discontinued.  When we identify these programs in the course of our analysis, we should 

query the providers as to their viability, and recommended that they be discontinued if a strong 

case cannot be made for their continued existence.  When the decision has been made to continue 

a program despite its admission of less than 5 candidates in 6 years, we should then use surveys 

and other single-subject methods to acquire data about program performance. 

 

                                                           
14

 A data cycle is defined as 3 academic years, because our standard for program completion and Praxis II pass rates is within 3 years 
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